63 research outputs found

    Developing of an Offline Monitoring Method for the Energy Demand of a Healthcare Facility in Italy

    Get PDF
    Hospitals are among the most energy-intensive buildings in the service industry. The development of energy management strategies could lead to important energy savings, and it must pass through detailed analyses of each specific activity energy requirement. The present study aims to find the main energy drivers of a healthcare facility and to develop an offline monitoring method appliable to future healthcare energy requirements. A Multiple Linear Regression model has been realized to define the standard energy consumption based on the year 2019, allowing to realize a Cumulative Sum of differences control chart including the 2020 energy consumption data. The proposed method allows to find variations between actual and standard building energy demands, being a useful tool to monitor the effectiveness of energy system control strategies

    Modular approach to analysis of chemically recuperated gas turbine cycles

    Get PDF
    Current research programmes such as the CAGT programme investigate the opportunity for advanced power generation cycles based on state-of-the-art aeroderivative gas turbine technology. Such cycles would be primarily aimed at intermediate duty applications. Compared to industrial gas turbines, aeroderivatives offer high simple cycle efficiency, and the capability to start quickly and frequently without a significant maintenance cost penalty. A key element for high system performance is the development of improved heat recovery systems, leading to advanced cycles such as the humid air turbine (HAT) cycle, the chemically recuperated gas turbine (CRGT) cycle and the Kalina combined cycle. When used in combination with advanced technologies and components, screening studies conducted by research programmes such as the CAGT programme predict that such advanced cycles could theoretically lead to net cycle efficiencies exceeding 60%. In this paper, the authors present the application of the modular approach to cycle simulation and performance predictions of CRGT cycles. The paper first presents the modular simulation code concept and the main characteristics of CRGT cycles. The paper next discusses the development of the methane–steam reformer unit model used for the simulations. The modular code is then used to compute performance characteristics of a simple CRGT cycle and a reheat CRGT cycle, both based on the General Electric LM6000 aeroderivative gas turbine

    effects of upgraded cooling system and new blade materials on a real gas turbine performance

    Get PDF
    Abstract The aim of this paper is to study the effects on the performance of a real heavy-duty gas turbine of two different solutions for enhancing turbine blades thermal resistance. An upgrade of the first stator cooling system and the adoption of improved blade materials are simulated exploiting an in-house simulation tool (ESMS). The changes are studied separately in order to point out the positive effects as well as the related risks, such as the side effect of temperature increase on downstream blade rows, to be considered in service operations

    Performance Analysis in Off-design Condition of Gas Turbine Air-bottoming Combined System☆

    Get PDF
    Abstract Nowadays, the gradual depletion of fossil fuels associated with constraints on emissions of greenhouse gases leads to valorize their wasted heat from power plant. One of the technologies adopted for improvement is the utilization of combined cycles. For this purpose, the steam cycle is used most frequently. These systems are highly efficient, but they are very complex and water is requested, moreover they are very heavy, so they cannot always be used. In this context, Air Bottoming Cycles (ABC) become attractive for potential use in future plants and repowering because they are light, compact and they have flexible-use and no water consumption. An application of an Air Bottoming Cycle (ABC) is composed of a gas turbine powered by natural gas, an air compressor and an air turbine coupled to the system by means of a heat exchanger, referred to as the AHX (Air Heat Exchanger). The aim of this paper is to study an Air Bottoming Cycle (ABC) that uses a medium power industrial gas turbine as topper cycle. A thermodynamic optimization is realized, determining the best pressure ratio and air mass flow rate of bottomer cycle. Then, an off-design analysis varying ambient temperature and FAR (Fuel Air Ratio) is shown, in fact, in this case, the exhaust gas conditions from topper gas turbine and inlet air of bottoming joule cycle change
    corecore